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Chaotic Responses of Curved Plate under Sinusoidal Loading 
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In the present investigation, the nonlinear dynamic buckling of a curved plate subjected to 

sinusoidal loading is examined. By the theoretical analyses, a highly nonlinear snap-through 

motion of a c lamped-free-clamped-free plate and its effect on the overall vibration response are 

investigated. The problem is reduced to that of a single degree of  freedom system with the 

Rayleigh-Ritz  procedure. The resulting nonlinear governing equation is solved using Runge- 

Kutta (RK-4) numerical integration method. The snap-through boundaries, which vary with 

different damping coefficient and linear circular frequency of the fiat plate are studied and given 

in terms of force and displacement. The relationships between static and dynamic responses at 

the start of a snap-through motion are also predicted. The analysis brings out various 

characteristic features of  the phenomenon, i.e. 1) small oscillation about the buckled posi t ion-  

softening spring type motion, 2) chaotic motion of intermittent snap-through, and 3) large 

oscillation of  continuous snap-through motion crossing the two buckled posi t ions-hardening 

spring type. The responses of buckled plate were found to be greatly affected by the snap-  

through motion. Therefore, better understanding of the snap-through motion is needed to 

predict the full dynamic response of a curved plate. 
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1. I n t r o d u c t i o n  

Structural components made of curved plate 

elements often find applications in construction 

of roof  and aircraft structures. Curved plate struc- 

ture design is often used instead of  flat plate 

structure design because of higher transverse 

stiffness, less aerodynamic resistance and better 

architectural appearance. However, the curved 

plates are generally thin due to the difficulties of  

manufacturing thick curved panel and the light- 
weight design purpose, thus they are susceptible 

to static and dynamic instability of snap-through 
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motion when subject to combined in-plane and 

transverse loading. 

Snap-through motion may cause a plate re- 

peatedly curving inward and outward to induce 

large in-plane stresses, and finally lead to struc- 

tural failures. In engineering practice, the design 

of structures against snap-through is based on the 

static analysis and the use of  approximate correc- 

tion factor to account for dynamic effects. Such 

simplification may result in inaccurate predic- 

tions of  fatigue life, structural failure stresses, 

and dynamic responses. Thus, there is a need to 
develop an effective method of  structural dynamic 

response analysis, coupled with accurate charac- 

terization of snap-through motion. 

The static in-plane loading can be caused by 

mechanical or thermal stresses from the support 

frames. These stresses may not be present during 
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the installation of the structure and therefore not 

considered in the design calculations. However 

the in-plane stresses can induce transverse buck- 

ling and the buckled plate will undergo snap- 

through instability similar to those found in 

arches under transverse loading. The transverse 

loading is generally dynamic or transient in 

practice and may be due to wind, airflow forced 

by fans, acoustic waves or impact of objects. A 

number of structural failures, vibration fatigue 

and noise transmission problems in building roof 

panels, aircraft fuselage and ventilation ducts 

were found to be caused by the dynamic snap- 

through motion under combined in-plane and 

transverse loading. 

Nonlinear vibrations of a buckled beam has 

received significant attention in the literature and 

has been studied by Tseng and Dugundji (Tseng 

and Dugundji, 1970) whereas the studies related 

to chaotic responses were undertaken by many 

investigators (Afaneh and Ibrahim, 1992; Ji and 

Hansen, 2000; Brunsden et al., 1989; Pezeshki 

and Dowell, 1987). All these works were based 

on the harmonic excitation. Furthermore, Tseng 

and Dugundji (Yseng and Dugundji, 1970) ex- 

perimentally investigated the non-l inear  response 

and large-amplitude vibration of a buckled beam 

with fixed ends. Later, experimental investiga- 

tions of chaotic responses were reported by Tang 

and Dowell, Murphy and Virgin, Kreider and 

Nayfeh, etc (Tang and Dowell, 1988 ; Yamaki et 

al., 1981; Murphy et al., 1996; Kreider and 

Nayfeh, 1988 ; Leatherwood et al., 1992 ; Wolfe et 

al., 1995). However, the snap-through motion 

was not studied. A Rayleigh-Ritz analysis based 

on a single mode model to represent the trans- 

verse displacement of a plate due to in-plane 

stresses was developed by Ng (Ng, 1989a ; 2000 ; 

1996; 1989b; Poon, 2002). The response of the 

system under various excitations showed ampli- 

tude modulations as well as snap-through mo- 

tions. 
It is noted that most previous theoretical and 

experimental works on snap-through motion 

were mainly on buckled beams. This formulation 

in this paper is useful for two-dimensional an- 

alysis of plates subject to a uniaxial static load a 

transverse harmonic support motion. In this pa- 

per, a detailed parametric study to highlight the 

critical parameters is carried out considering a 

simply supported plate subject to a sinusoidal 

excitation using a single mode representation of 

displacement patterns. The intent of the paper is 

to develop a general understanding of the pheno- 

mena that may be applied to many engineering 

problems that fall in this category. 

2. Formulation 

2.1 Single-mode formula for a plate under 
compression 

The starting point is the von Karman equations 

for large deflection of plates. Consider a free- 

clamped-free-clamped rectangular plate of width 

a in x direction and length b in y direction with 

thickness t acted on by a transverse pressure h. 

The plate is subject to horizontal displacement U 

in x direction. The end moves only during initial 

compression process and fixed for dynamic load- 

ing. The system under investigation is shown 

schematically in Fig. 1. The transverse equilibri- 

um equation and the in-plane compatibility equa- 

tion can be expressed, respectively, as 

3 w  ~ 02 w O~ w 

ox oy y 

and 

1 _ , _  / 02w \2 3~w °~w (2) 
E t  v r =  ~ axay ) 3x 2 3y 2 

, /  
¢ 

Fig, I Schematic diagram of a C-F-C-F  plate 
model 
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~ F  o~F o~F 
where a x :  ~vz-, try --  Ox 2 , r ~ =  8xOy ' F = a  

stress function F(x ,  y) ;  ~rx, try, rxy=in-plane 
stresses ; w=transverse displacement ; D = p l a t e  

Et  2 
flexural stiffness= - - -  E=modulus  of 

12 ( t - -v  2) ' 
elasticity ; t=p la t e  thickness ; h=transverse load 
per unit area (pressure); V4=biharmonic opera- 
tor ; v=Poisson ' s  ratio. 

The steps are the same as in the Rayleigh-Ritz 
method and summarized as follows: 

Transverse Displacement is given by 

w (x, y) = tQ¢ (x) # (y) 

where w(x,  y) =transverse displacement 
tQ : m o d a l  displacement 
¢(x)  !b (y)=buckling mode shape 

function 
Q : m o d a l  displacement 

coefficient 

(3) 

The corresponding modal force coefficient, P,  

is 

b a 

P = t  f f h ( x ,  y) ¢(x) #(y)dxdy 
o o 

where h(x,  y) is the transverse pressure, a and b 
are width and length of the plate in x and y 
directions, respectively. 

Stress Function is given by substituting w from 
(3) into (2), 

F(x ,  y) =F~(x, y) +Fp(x,  y) 

where Fp(x,  y) is the stress function due to the 
shortening of the edges and F~ (x, y) is the stress 
function due to large transverse displacement. 

F = E t 2 Q 2 ~  f+j¢, (x) #~ (y) 

1 ~ z 1 ~ z ( 4 )  
2 ~'xY --~l-'yX 

where ¢ / (x )~ j (y )  are higher order functions re- 
lated to ¢(x)  ~'(y), respectively, fi~ depends on 
i, j (details in Ng(1989)); P~, and Py are mean 
compressive stresses in x and y directions. 

Mean Compressive Stresses is given by for the 

edge displacement in x direction, 

U = ?  au fo [ ~x-~cr, l { ~w ~Z]dx .] ax d x =  E 2 \ Ox / J 
° (5)  

I- 1 /OZF 0 2 F \  l [ a w \ 2 1  , 

Substituting (3) and (4) into (5), Px, and Py 
can be derived. 

For sides fixed in-plane direction V = 0  (edge 
displacement in y direction being zero). 

E C,o, O2 (6) P~=P~ ( 1 - u  2) 

P,= v P . - E C y Q  2 (7) 

p , _  E[U] 
where -- 1 - - ~ \ a ] "  

Pu is the mean compressive stress due to edge 
shortening if the plate is fiat and C ~  is a constant 
related to ¢(x)  ¢r (y). Cy is a constant related to 
¢~(y). 

For sides free to move in the in-plane direction, 

Py=0 

and 

Px= P u -  E CxQ z 

where Cx is a constant related to ¢ (x) .  

In-plane Strain Energy is given by 

b a  

v,=ff rffldxdy 
-o-o-- 
++o (8) 

t 2 02F 02F 32F z 

Substituting (4) into (8), Ve is composed of  
two parts, Vep, the compressive strain energy due 
to shortening of  the edges, and Vec, the tensile 
strain energy due to the large transverse displace- 
ment. 

V~ _ tab : p~ + p~-2uPxPy] 

Ve Et51r 4 b..+ (9) C = - - a ~  e 

1I.= l ip+ v.c 
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where e is a constant related to fij. 

Bending Strain Energy is given by 

b a 

Vb = ~ -  + dxdy ( i O) 
o o 

Substituting (3) into (10) 

Vb = Dt2 a b ~ Q 2  d (11) 

where d is a constant related to ¢(x) Ik(y). 

Formulation of Static Equilibrium Equation is 
given by substituting (9) and (11) into the equa- 
tion 

a( Vec+ Vep+ lib) _ p  (12) 
aQ 

Linear Static Equilibrium Equation can be 
expressed by 

0Vb _ p  
a0 

This equation applies for a flat plate with small 
value of Q, for which Ve can be neglected. 

Substituting (11) into the above equation, 

7/.4 
2Dt2ab ~ Q d = P  

4 

Defining K = 2 D d t 2 a b ~ ,  the linear modal 

equilibrium equation is given by 

K Q = P  (13) 

K is thus the linear modal stiffness. 

Nonlinear Static Equilibrium Equation can be 
obtained by substituting (9) and (I0) into (12) 
and rearranging 

(14) 
p ' D d z  z q2tabx z 

- ~ t  t a T ~ j ~ - - -  C ~ = P  

Ddz~ -Pc ,  Pc 2t~bz2C~ - - K  By putting ta2Cxr a 

where K is the linear modal stiffness from (13) 

and @p2__ Pc 
Cxy 2 Et47r4Cxy - - c , )  2e + (l__v2) 

the equation becomes 

Q Pu _ Q - ~ - l  K - P  (15) 

This is the nonlinear modal equilibrium equa- 
Q2 

tion. ~ is the effect of large displacement, PcPU 

is the effect of compression. 

E Uc and P u _  U 
Defining (1 -- u 2) a ' Pc Uc' 

a_p and putting q =  and - - K Q p '  

the general non-dimensional equation is obtained 
by dividing (15) by KQp. 

qa-  ( U /  S c - 1 )  q=]) (16) 

Putting p = 0  for loading with in-plane com- 
pression only, 

_u_u< for P u < l  1, q = Q = 0  
Pc 'Uc  ' 

a n d f o r ~ > l , ~ > l , ~ = \ ~ - -  ~ { P" l )  

z U 1) 
q = ( C T -  

From the above it can be seen that Pc and Uc 
are the critical mean compressive stresses and 

edge shortening respectively, thus when ~-c =2, 

O=Qp and q = l  (19) 

The Kinetic Energy can be expressed as 

b a 

o o 

where p is the density of the plate substituting (3) 
into (20) 

1 2 VT=yMQ (21) 

b a 

where M = p t 3 f / ¢ 2 ( x )  ¢Z(y)dxdy and Mis the 

modal mass. 
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Lagrangian Equation for Linear Vibration is 
given by 

aVb d aVr 
aQ ~ dt aQ =P (22) 

Using results from (12), (20), the equation of 
motion is obtained 

KQ + M(~ = P (23) 

The natural linear circular frequency of  the flat 
configuration is thus given by 

~2 2_  K (24) 
M 

The modal mass Mcan  be written is terms of Q 

K 
M =  (25) .(22 

Lagrangian Equation for Nonlinear Vibration 
is given by 

3( Vb + Vec + V~ ) d 3 Vr 
3Q ~ dt OQ =P (26) 

Using results from (15) and (23) the modal 
equation of motion is obtained, 

Q2 P" I]KQ+M~)=P 
Qp2 Pc (27) 

Dividing both sides by KQp and using results 
from (16) and (25), the nondimensional equation 
of motion is obtained, 

a l 
q - R q + ~ i ~ = P  (28) 

q = - ~ - = n o n d i m e n s i o n a l  displacement pa- where 

rameter; Q==modal displacement coefficient; Qt, = 

value of Q at R =  1 ; R = A -  1 ; A = ~  ; U = i n -  

plane edge shortening displacement; Uc-----value 
of U at which buckling starts. 

The damping effect can be similarly included 
by dividing the modal damping force 2MA.QO(A 
is the modal damping coefficient) by KQp, which 

gives ~--q .  Thus the nondimensional equation of 

motion can be written as 

i~ .F~_+ q3_ Rq=l ) (29) 

Nondimensional Equation : Using the von Kar- 
man equation for nonlinear analysis and the 
Lagrangian equation for the formulation, the fol- 
lowing modal equations were obtained for a plate 
with modal displacement Q under modal force P 
(the equilibrium equation in the transverse direc- 
tion). 

For static equilibrium, 

q3-Rq = p  (30) 

For dynamic motion, 

~2 b ~ + ( q 3 - - R q )  =]) (31) 

where Q = l i n e a r  natural circular frequency of 
the flat configuration ; ~----modal damping coeffi- 

P cient ; p = - K ~ - : n o n d i m e n s i o n a l  force parame- 

ter;  P----applied modal force; K----linear modal 
stiffness of  the flat plate. 

The parameter Qp, Uc, f2, ~, K depend on the 
assumed shape function of the mode and other 
plate parameters. The non-dimensional parame- 
ters, q, R,  p, can be evaluated after Qp, U¢, K a n d  
,(2 are found by experiments or theories. The Eq. 
(30) involves only non-dimensional parameters 
and is therefore independent of the plate para- 
meters. Actually it can be used for other boundary 
conditions. The finite Eq. (31) are the same for 
any boundary conditions although the parameters 
Qp, Uc, K and f2 are changed. Using equations 
(30) and (31), the nonlinear static and dynamic 
behaviors of  a plate can be predicted and they are 
applicable to plates of  any size, boundary con- 
ditions, and material properties. 

3. Pred ic t ion  o f  Reg ion  o f  Chaot i c  

M o t i o n  

This paper considers the case when there are 
two equilibrium positions that are not affected by 
the initial imperfection. The preceding formulas 
(30) and (31) are applicable to any plate with 
arbitrary boundary conditions if there is no 
coupling between the various modes. From 
formula (30), the stability relationship between p 
and q is known. Static equilibrium position ao 
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under different R are found by putting p = 0  in 

Eq. (30). For  post-buckling region R > 0 ,  there 

are three equilibrium values of q ~ - ,  - - f R -  and 

zero. Zero is an unstable position as the stiffness 

is negative. 

For simplicity and easy of explanation, the free 

vibration differential Eq. of (31), with p = 0  and 

~ = 0 ,  becomes 

?/1 Rlql+qlS=O (32) 
S22 

_ dql ddh d/h dql /h 
Since ~ l - -  dt  dqt d t  dq~ 

1 d ( q l  2) 
(33) 

ql = 2 dql 

Substituting (33) into (32) and the resulting 

first order differential equation is 

1 d q l 2 - - R  ~ ~ s  

l f do?=f(R,q~-q3) dq~ (34) 
2 ~  z 

1 ; .  2 _  Rlql 2 q4 
2Q 2 t/l } T +  C 

The left-hand side of  Eq. (34) represents the 

kinetic energy and the r ight-hand side represents 

the potential energy. 

Let q~m, q~0 and q~n be the maximum initial 

displacement, static equilibrium point and mini- 

mum displacement respectively. The mid-point  of  

the beam is displaced by a distance from qlo to 

ql~ and released from rest. 

The initial equilibrium point is obtained by 

- Rlql° + ql°3=O (35) 
ql02=R1 

As at the position qlm, t?l=0, which give 

-Rlqlm2 Jr qlm4 (36) 
C =  2 4 

By the substitution of Eq. (35) and (36) into 
(34), the following equation is obtained : 

I . 2  1 ~  2 2~ 2,Q2 ql =~-t ,  ql --qlra )(2qtO 2 -- ql 2 -- qlra 2) (37) 

The maximum and minimum displacements of  

the vibration can be easily obtained from equa- 

tion (37) by setting 01=0. 

q~2-- q~n2=O ~ q m = F q ~  

or  

2q lo  2 -  q l . ,  2 -  qo .  2 = 0  =>  qo, = + f f 2 q l o  2 - -  qlm 2 

For the case of small amplitude of vibration 

qxm<~/-2qlo (Case 1), there is no snap-through 
motion. 

q,~ = ff2ql02- qlm 2 (38) 

For  the case of qlm = , / 2  ql0 (Case 2), this is the 

limiting point of snap-through : 

q ~ = 0  (39) 

For qlm > , / 2  qx0 (Case 3), snap-through mo- 

tion will take place. 

qin = -- qnm (40) 

If R I = I ,  q l0= l ,  and then 

qlm = 1.404 (41 ) 

Equation (37) can be modified into the fol- 

lowing form : 

• 2 z .(22.4-,~2Vqlo2qlra2 2_ q~2~ (42) 
q~-R~22q~ + 2 - ~ -  2 [ 2 T T I  

Substituting (41) into (42), R I = I  yields 

"(22 3"QZ (43) q12--"Q2q12-~"~ - q14-- 4 

Equation (43) is plotted in Fig. 2 in non- 

dimenisonalized form for various values of  ql=. 

There are three static equilibrium positions, one 

unstable in the origin and two stable positions 

elsewhere. Note that the trajectories depart from a 

circular shape when the amplitude q~,n grows. The 

motion taking place in the two domains centered 

about the two stable equilibrium positions varied 

with the buckling parameter R1. The state plane 

at the critical boundary for different buckling 

parameter R1 is shown in Fig. 3. It can be seen 

that the two centers are square root of the 

buckling parameter R~. 
In this section, results of the numerical integra- 

tion will be presented for a curved plate with R =  

1 subject to a sinusoidal force. For  R <  1, snap-  

through motion will not inpractice exist because 
the initial buckling displacement is too small. The 

Runge-Kutta  (RK-4) technique is adopted to 

analyze the equation of  motion of  a buckled plate 
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(31) with ~=0.01, 32=63 rad/s, q o : l ,  P:Po sin 

cot, where Po and o) are the amplitude and circu- 

lar frequency of the excitation force, respectively. 

The linear natural circular frequency of the buc- 

kled plate is f 2 f 2 - : 8 9 . 1  rad/s. 

First, the non-dimensional  force amplitude Po 

varies from 0.05 to 4 and the vibration responses 

in terms of mean displacement and R.M.S. dis- 

placement are found for various forcing frequen- 

cies. The results are presented in the form of the 

non-l inear  responses q of the curved plate versus 

the circular frequency w. Depending on the force 

amplitude P0, Figs. 4 to 9 yield three regions of 

distinct non-l inear  dynamic behaviour compri- 

sing softening spring, chaotic and hardening 

spring. The chaotic type of vibration or snap- 

through motion appears due to an instability 

condition. The dynamic instability regions for the 

single mode response of a buckled plate under 

sinusoidal load are presented in Table 1. 

It is shown in Figs. 4 to 9 that the R.M.S. 

amplitude of the response increases with the ex- 

citation force Po. As for a constant magnitude of 

[90 (say po=0.05), the amplitude of vibration qr~s 

Table 1 Dynamic instability region for single mode res)onse 

Displacement or Intermittent Snap-through Continuous Snap-through 
No Snap-through Region 

Strain Response Region Region 

Mean q (mean) Static value Unsteady Zero 

R.M.S. q(rms) <20~ta t ic  value Jump with Excitation >70% of static value 

Non-linearity Softening Unstable Hardening 

L ~  

 ::~,".. ",\ -, .~-:4--..~ --. , /,".." :;-/-q I 

Fig. 2 State plane for different initial displacements 
qxm with R l = l  

- - i t l~ i 

Fig. 3 State plane at critical boundary for several 

values of qt0 (ql02=Rl) 

Fig. 4 

G"-.,,...__ 

Plot for soft sping behavior at 80 rad/s with 
Po =0.05 

Fig. 5 

Po~04 ,  fl.ql& C -0.01, ~ 

n i u t u  

Plot for chaotic behavior at 74 to 81 rad/s 
with ,00=0.08 
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exhibits a peak phenomenon when the excitation 

frequency co is slowly increased. Similarly, the 

qmean value causes a trough at the same frequency. 

It is evident in Fig. 4 that the softening spring 

behaviour appears before the initiation of  the 

snap-through motion. 

The chaotic behavior is found to begin when 

/90 exceeds 0.065 with q~----0.422. It is shown in 

Fig. 5 that the snap-through motion occurs when 

amplitude of force Po equals 0.08. Chaos is the 

instability behavior of a system. The movements 

of qms and q~ ,~  are irregular, non-periodic and 

intermittent. When the amplitude of  the excita- 

tion force 19o is increased from 0.08 to 0.35, the 

region of circular frequency co that causes chaotic 

vibration response becomes wider. At /9o----0.35, 

r 

u 

i 

Fig. 6 Plot for chaotic behavior with #o=0.2 Fig. 7 Plot for chaotic behavior with #0=0.35 

t 

U 

4 $ L  

u (~mwl ,  m ~  m m 

Fig. 8 Plot for hardening spring effect with #o=0.9 

V ~ l a t ~  cl 'ToI~ I ~ a t m ~  m d  t t a t l e  ~ a ~ m w m l t  t m a t t  ~ Fom~ 

t 

I t  

Fig. 9 Plot for hardening spring effect at #0=4 

ForOafl frequency at max .  m i d l S p ~  m~t v i nOUS am plRuae PO 

1.0 I 

f ..,,-.- 

--'-.o I ~ _ ~ . . ~ , . , , . ~  
0 txl 05 03 ~ 05 116 Q7 ~ 05 t 

Fig. 10 Plot for maximum q (rrns) with #0=0.05 to 
0.9 

f . , - , e "  

b t~l ~.~ o3 ~ ~ it6 0.7 011 

Fomlnfl m~tlt~nde PO 

Fig. 11 Plot for ~o at max. q ( r m s )  with #o 
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unsteady snap-through motions starts at co=16 

rad/s  and ends at ¢o=107rad/s .  Under the 

instability conditions, the snap-through (chaotic) 

motion occurs as indicated by q,-,,,s=0.9 (close to 

1.0) and q~ean=0.07 (close to zero). The q ~ s  

value for the steady and continuous snap-through 

region rises up to a peak response of 1.3. It is 

observed that subharmonic resonances that play 

an important role in pre-chaotic vibration occurs 

at various frequencies such as 18 rad/s,  28 rad/s,  

40 rad/s  & 48 rad/s.  

When Po is increased to 0.9, steady and contin- 

uous snap-through motion occurs up to w=120 

rad/s  as indicated by Fig. 8 where qmean=0. The 

qraean is equal to zero because the snap-through 

motions are continuous. A jump phenomenon 

occurs at aJ=120 rad/s,  indicating the hardening 

spring resonance. It should be noted that fiat 

plates without the snap-through motion show the 

hardening spring effect only. Figure 9 shows the 

response curve shifting upward to q =  1.5 when Po 

is equal to 4. The response continues to increase 

with Po until the material failure occurs. 

It is shown in Fig. 10 that the total dynamic 

displacement changes rapidly when po=0.067. 

The irregular pattern between Po=0.067 and po = 

0.2 exhibits the non-periodic  response and it 

demonstrates the transition zone between the 

softening spring and hardening spring effects. The 

nondimensional displacement rises up constantly 

after Po equal 0.2. It is clear that the static dis- 

placement value in Fig. 10 loses its stability at 

0.385. The ratio of  the force amplitude between 

the static and dynamic motion at the bifurcation 

point (onset of  snap-through) is 5.75. Figure 11 

indicates that the forcing frequency of maximum 

q ~ s  comes to a minimum point at c0=75 rad/s  

when the forcing amplitude increases. An inter- 

esting observation here is that the maximum dis- 

placement has a tendency to expand to a lower 

frequency first with softening spring behaviour 

and then goes up to a higher frequency with 

.hardening spring effect. The lowest region 

exhibits the chaotic nonlinear behaviour. 

4. Analysis of Results 

Since the nondimensional force parameters 

depend upon the modal damping coefficient 

and the linear circular frequency of the fiat plate 

f2, similar results were obtained for different 

(related to mass) and ~e (related to damping).  

The relationships between various parameters are 

tabulated in Tables 2 and 3. 

Table 2 Comparison of the static and dynamic instability region for different $ 

Instability Region 
begins at 

(Fixed f2=63) 
Static 

Nondimensional Force 
0.385 

Parameter Po 

Nondimensional 
Displacement 0.423 

Parameter q,-m~ ( qo = 1 ) 

Dynamic 
$=O.Ol 

Dynamic 
$=0.03 

Dynamic 
$=0.05 

Dynamic 
$=0.07 

Dynamic 
$=0.1 

Dynamic 
$=0.7 

0.065 0.085 0.11 0.145 0.178 0.3 

0.422 0.403 0.350 0.452 0.383 0.412 

Table 3 Comparison of the static and dynamic instability region for different .Q 

Instability Region 
begins at Static Dynamic 

~ = 8  (Fixed $=0.01) 

Nondimensional force 
0.385 

parameter Po 

Nondimensional 
Displacement parameter 0.423 

q,,ns at qo=i 

Dynamic 
f2=16 

Dynamic 
f2=31.5 

Dynamic 
.(2=63 

Dynamic 
,.(2=80 

Dynamic 
.(2=100 

0.067 0.063 0.065 0.065 0.063 0.067 

0.448 0.422 0.301 0.355 0.344 0.408 
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Tables 2 and 3 examine the instability regions 
generated by Eqs. (30) and (31) for plates with 
different ~ and ~ under transverse force. It is 
observed that the points of  dynamic instability 
with fixed ~ are generally consistent for different 
,.Q. It is also observed that for fixed ,(2, the points 
of dynamic instability due to Po show a linear 
relationship with ~. It is also interesting to note 
that the displacement parameter q maintains a 
fairly constant range between 0.3 to 0.45 for the 
start of the snap-through motion. This can be 
expected since the parameter of  dynamic stability 
is q=0 .3  for all cases. Another parameter of 
dynamic stability is force parameter Po which is - -  
expected to increase with increased modal dam- i '~ 
ping coefficient ~. Comparing the corresponding ~"  
results for constant ~ and constant ~ ,  it is gener- 

ally observed that the plate under dynamic load- 
ing has lower point of unstable region than that u 

under static loading. 

From Figs. 4 to 9, it is observed that three Fig. 12 
regions of different nonlinear dynamic behavior 
are presented. Different regions have their own 
characteristics : 

/ 

I. Sof ten ing  spring - the resonant frequency de- " t .  
creases with amplitude and the jump behavior '~ 
occurs at the left-hand side of the resonant , , '  

frequency. Dynamic displacement Z/q<0.3,12 shows l°i°[ 
mean displacement q = - - l .  Figure 'V 
the time history of the softening spring effect 
in which the plate or beam moves in a small 
oscillation in the neighborhood of the initial 
position 1. 

2. Chaotic - t h e  response is non-periodic, inter- 
mittent and jumps up and down around the 
two positions q = 1 and -- 1. This is called the 
snap-through motion between the static equi- 
librium positions. The snap through motion is I l l  

I 
of very low frequency and large amplitude 
when compared with the oscillation around 
the static equilibrium position. Dynamic dis- | 
placement 0 .3< ,dq<  1, mean displacement 
0 < q < l .  The chaotic region serves as the 
transition between two paths (see Fig. 13). 

3. Harden ing  s p r i n g - w h e n  the snap-through 
motion gets more repetitions and of  larger 
amplitude, the response becomes periodic Fig. 14 

again. In this case, the snap-through motion 
occurs in every cyclic of vibration. The fre- 
quency is initially low and increases rapidly 
with amplitude. The jump behavior is to the 
right hand side of  the resonant frequency. 
Dynamic displacement Zlq > 1, mean displace- 
ment qmean=O. Figure 14 shows the time his- 
tory of  the hardening spring behaviour. 

8oflellfng Sprhlg at Po'O.08 

Time In se¢. 

Time history of softening spring behaviour 

Ctmobc Motion at Po-0.385 

Time in SaC 

Fig. 13 Time history of chaotic motion 

~ l n g  $p~ng ~ Po,,4 

T i n w  In 8 ( ¢ .  

Time history of hardening spring behaviour 
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5. Conclusions  

The response of  a nonlinear plate due to 

harmonic excitation has been investigated. The 

large amplitude vibration of  a curved plate shows 

the snap-through motion due to instability. The 

intermittent snap-through serves as a transition 

region from the softening spring behavior to the 

hardening spring behavior. The presence of the 

snap-through motion requires special care in 

measuring the mean and r.m.s, values and fre- 

quencies of the dynamic displacement responses. 

Results with fixed ,(2 or ~ were compared with 

each other to investigate the behaviors of  

instability. From the detailed analysis, the fol- 

lowing observations have been made : 

(1) The amplitude of vibration response qrms 
is close to the static equilibrium value at the point 

of initiation of the snap-through motion for all 

cases. 

(2) For  a given linear circular frequency of 

flat plate ~ ,  the force parameter Po at the onset of 

snap-through motion is linearly proport ional  to 

the damping coefficient ~e. 

(3) For  a given damping coefficient ~, the 

force parameter po maintains a fairly stable value 

with different ~2 at the starting point of the snap-  

through motion. 

(4) The present investigation has attempted to 

show the nonlinear vibration behaviour of buckled 

plate and its stability boundaries under different 

parameters. 

(5) The prediction can provide useful informa- 

tion about the onset of the snap-through motion 

so that the plate can be designed with maximum 

reliability. 
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